, LEMON

ON (L.) BURM. FIFAMILY: RUTACEAE

Y DR PETER GREENHALGH

INTRODUCTION
Citrus species are grown throughout the world and citrus is the most important tree fruit crop. Citrus oils and lemon is the second largest citrus oil after orange and its derivatives. Lemon oil is formed by cells inside the peel or rind of the fruit. The lemon fruit is obtained from the lemon tree (Citrus are a mystery with possible sources being cited as southern China, the eastern Himalayas, and possibly a hybrid of Indian lemons. Lemon was unknown during the Roman Empire and was introduced to Persia at the beginning of the 12th century. During the following centuries it spread to North Africa, Spain and southern Italy, whe Americas in the late 15th century Lemon was introduced to Florida in the early 16 th century.

Lemon trees have a long gestation period and can grow to a height of between 3-6 metres depending on species. A typical citrus tree yields essential oil after $4-5$ years and continues to yield oil until it is about $20-25$ yers old affect the industry today and decisions being made tod can continue to affect the industry for 20 years. Except for Argentina, most citrus farmers aim to sell their lemons into the fresh fruit market, with fruit not meeting specifications being processed into juice, and the essential oil is a by-product of juice production. Citrus processing and the recovery
of citrus by-products (e.g. juice, peel of citrus by-products (e.g. juice, pee
oil, aroma and essence oils, frozen pulp cells and cattle feed pellets) is an important economic component of citrus production, especially when targe volumes of citrus are processed. Average global data suggests that each tonne of lemon fruit yields $48-52$ kg of lemon juice, $2.4-4.5 \mathrm{~kg}$ of lemon oil and $50-52 \mathrm{~kg}$ of dehydrated lemon
peel.

Thus, in contrast to most essential oils, which are extracted by steam distillation, citrus oils are extracted as a by-product of juice extractio by centrifugation, producing cold pressed (CP) oil. Lemon oil is generally extracted, without heat, by cold expression of the peel of the fresh Usually Brown, JBT (FMC) or Excel extractors are used to express the oil although other types of extractors can be used, including the pelatrice system. The resulting oil and water emulsion is sent to a series of centrifuges to separate the oil and water. Some $0.30-0.55 \%$ of CP oil (i.e. $3-5 \mathrm{~kg}$ of oil per $1,000 \mathrm{~kg}$ of fruit) can be extracted from the skin with no yellow colour of the lemon. The colour of the oil is partly dependent on the maturity of the fruit when processed and the type of extraction equipment used. The more aggressive the extraction process (e.g. Brown BO and JBT MORE) the darker the oil.
Very small volumes of lemon oil are also obtained by steam distilling lemon oil and has no colour. In addition, lemon essence oil can b isolated from lemon juice during the evaporation process. This oil is water white in colour and very juicy.

Crude lemon oil is further processed into other products, many of which are used as F\&F ingredients. One complex distillation columns known as folding oils - whereby the flavour components including d-limonene are separated for use in the beverage and confectionery industries. D-limonene is used as a natural cleaning agent or degreaser and can be used in emulsions. Natural isolates are also fractionated from the to enhance flavour profiles. Citrus oils are made into various forms of
lavours and fragrances depending on the application, e.g. lemon fragrance for the dishwasher industry or watersoluble flavours for soft drinks. Lemons have practically no waste, with most parts being used. Much of the industry is fully committed to a circular economy strategy. Indeed, water used demon orchards nearby the processing lemon orchards nearby the processing
he chemical constituents of lemon oil include $65-75 \%$ d-limonene, 3.5-5\% citral, 3-4.5\% other volatile erpenes (terpinene, pinene, sabinene myrcene, linalool) and 2% nonvolatiles. Citral and some of the othe its characteristic aroma and flavour. Constituents can vary between lemon varieties, extraction process, region, weather and water availability. The SO Standard 855:2003 Oil of Lemon Citrus limon (L.) Burm. f.l obtained by expression gives the chemical omponents listed in the table pposite

USES

Lemon has multiple uses, mainly as fresh fruit, then as juice followed by essential oil and dehydrated peel. Lemon oil is used in a wide range of products and industries, including lavour, fragrance, aromatherapy, pharmaceuticals, cosmetics, agriculture and animal feeds. Lemon is a major flavour in most countries and has excellent health properties. hree quarters of lemon oil is used in flavouring, especially in food and beverages, particularly soft drinks. t gives the lemon flavour to throat lozenges, and other sweets as well as chewing gum. Salad dressings and bakery products are also flavoured with lemon oil. Its fresh flavour is sometimes used to mask tastes in health supplements containing fish oils.
Alongside its culinary uses it is found in a range of household and industria

LEMON OIL CHEMICAL CONSTITUENTS

	AMERICAN TYPE				MEDITERRRANEAN TYPE				EQUATORIAL	
COMPONENTS	COASTAL TYPE		DESERT TYPE		SPAIN		italy		IVORY COAST,BRAZIL	
	min.	max.								
α-Thujene	0.2	0.5	0.2	0.5	0.2	0.5	0.2	0.5	0.2	0.5
α-Pinene	1.5	2.5	1.4	2.5	1.5	3.0	1.5	3.0	1.4	3.0
Sabinene	1.5	2.5	1.3	2.5	1.5	3.0	1.5	3.0	1.4	3.0
β-Pinene	9.0	14.0	10.0	13.0	10.0	16.5	10.0	16.5	7.0	16.0
p-Cymene	0.05	0.35	0.01	0.35	traces	0.40	0.05	0.35	0.05	0.35
Limonene ${ }^{\text {a }}$	63.0	70.0	70.0	80.0	60.0	70.0	60.0	68.0	59.0	75.0
$\mathrm{\gamma}$-Terpinene	8.3	9.5	6.5	8.0	8.0	12.0	8.0	12.0	6.0	12.0
α-Terpineol	0.1	0.25	0.06	0.15	0.09	0.35	0.1	0.3	0.0	0.4
Neral	0.6	0.9	0.3	0.6	0.4	1.0	0.6	1.2	0.2	1.2
Geranial	1.0	2.0	0.5	0.9	0.6	2.0	0.8	2.0	0.5	2.0
β-Bisabolene	0.45	0.9	0.4	0.7	0.45	0.9	0.45	0.9	0.20	0.9
Neryl acetate	0.35	0.6	0.3	0.5	0.3	0.6	0.2	0.5	0.1	0.5
Geranyl acetate	0.2	0.5	0.1	0.3	0.2	0.65	0.3	0.65	traces	0.3

Note: The chromatographic profile is normative, contrary to typical chromatograms given for information in Annex A.
a This is regarded as being completely D-limonene by independent chemical and physical analysis.
cleaning products because of its ability to disinfect, deodorise, remove Lemon is also used in aromatherapy to enhance mood and its antibacterial properties lead to use medicinal applications including antioxidant recipes. Its fresh and zesty note leads to its use in fragrances, eau de cologne and candles.
QUALITY
The quality of lemon oil is influenced by several factors. Like most oils, a key factor is the percentages of various aromatic components, mainly isomers of citral including neral, geranial and other aldehydes, which are quite unstable and volatile. Naturally these give values anywhere from 1.5-4.0\%. In more quality-conscious markets the "purity" is also important, which can be determined using gas
chromatography (GC) analysis. An increasingly key quality issue relates
to the level of agricultural residues Lemon oil oxidises very easily so proper storage is important, otherw both the colour and the aroma can be affected.

Quality has become increasingly important as consumer and regulatory demands have become more stringent. Almost every year new parameters are set which have old specifications. Moreover, quality specifications can vary between different markets and end uses. Wher producers concentrate on the fresh fruit market there are issues relating to the use of substances that are no globally acceptable. Considerable efforts are being made, particularly in Argentina and Spain, to reduce pesticide usage and the impact of
processing and residue concentration on quality (see AR section below).

GROWTH AND
PRODUCTION
CHARACTERISTICS

Varieties

The botanical name is Citrus limon and the main varieties grown around the world are:

Eureka and Lisbon. These are the most common ones, grown in Argentina, USA, South Africa and Mexico.
Genova is similar to Eureka and is grown in Argentina. Limoneira is a high oil variety grown in Argentina and Mexico

Feminellos and Monachellos are grown in Italy.

The similar Fino variety is the main variety grown in Spain (about 70° along with the thicker-skinned Verna (30%), which is exclusive to Spain.

Interdonatos, Lamas and a hybrid called Meyer are grown in Turkey, the latter also in California.

In Brazil, the lemon variety is Siciliano, although this is not originally an Italian variety, but was developed in Florida.

It takes about five years for a lemon tree to produce a full crop, so completely new lemon oil origins are lemons are grown in both the northern and southern hemispheres and on all continents, they are available South Africa are the major southern hemisphere producers and harvesting and processing is usually undertaken from April to September. The major northern hemisphere producers are in scale of production, Spain, the USA, Turkey, Italy and Mexico, with harvesting and processing taking
place from November to March, atthough some Italian production
stretches into August. There are two seasons in Spain giving them around seasons in Spain giving them around
nine months of harvesting during the year. The Fino and Primafiori varieties run from October to April and the Verna variety from April to July.
GLOBAL LEMON PRODUCTION
Lemons are produced in a large number of countries worldwide. particularly China and India, produce negligible amounts of lemon oil. Production of lemon oil is dominated by Argentina, Spain, Italy, the USA and South Africa. Argentina and Spain dominate world production, with approximately 70% of global output. The USA, Turkey and Italy are also these six countries combined account for approximately 84% of world lemon production. Smaller produce are Chile, Mexico and Brazil. There are also some lemon groves found in China, India, Uruguay, Bolivia, Morocco, Greece, Israel and Portugal. Lemon usually grows best in a

Mediterranean climate characterised by hot days, cool nights and a rainy areas are usually superior to those grown in desert regions.

Data on lemon production can be

 confusing in part because some countries combine lemon (Citrus limon) and lime (Citrus aurantifolia or Citrus latifolia) together in their are a similar shape but smaller like a golf ball and taste quite different: they are greener and grow in more tropical and sub-tropical areas, including Peru Brazil, Mexico, India and Iran.The graphic shows average annual lemon production and processing in major producing countries between 2010 and 2020 compited by the Wor Asociación Interprofesional De Limón Y Pomelo). As discussed in the country profiles below, there can be substantial variations in annual production and processing mainly as result of climatic factors, including frosts, droughts, heavy rainfall and hurricanes.

WORLD LEMON PRODUCTION AND PROCESSING AVERAGE 2010 - 2020 (METRIC TONNES)

㓦			C*			
Argentina	Spain	USA	Turkey	Italy	RSA	Others*
$\begin{gathered} \text { Fresh } \\ 311,471 \end{gathered}$	$\begin{gathered} \text { Fresh } \\ 788,188 \end{gathered}$	$\begin{gathered} \text { Fresh } \\ 623,000 \end{gathered}$	$\begin{gathered} \text { Fresh } \\ 758,100 \end{gathered}$	$\begin{gathered} \text { Fresh } \\ 423,700 \end{gathered}$	$\begin{gathered} \text { Fresh } \\ 258,342 \end{gathered}$	$\begin{gathered} \text { Fresh } \\ 650,000 \end{gathered}$
Processed 1,159,958	Processed 247,522	Processed 211,000	$\begin{gathered} \text { Processed } \\ 36,600 \end{gathered}$	$\begin{gathered} \text { Processed } \\ 79,800 \end{gathered}$	$\begin{gathered} \text { Processed } \\ 95,873 \end{gathered}$	Processed 240.000
Production 1,471,429	Production 1,035,711	Production 834,200	Production 794,700	Production 503,500	Production 354,216	Production 890,000

Total: Fresh 3,813,002 Processed 2,070,753 Production 5,883,755 'Egypt, China, Mexico, Bolivia, Brazil, Australia, Uruguay and others
nnual lemon output processing and exports over the past decad
in the major producing countries are shown in the table below.

WORLD MAJOR LEMON PRODUCERS AND PROCESSORS 2010/11 TO 2019/20
 (METRIC TONNES)

argentina	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	average	\%
Processing	1.360.741	1.086,146	1.099,159	603,300	1,140,287	1.209,942	1,100,000	1.400,000	1,450,000	1,150.000	1.159.958	78.8\%
Local	63.687	61.071	66.936	47.574	70,307	88,152	85.000	140,000	100,000	100,000	82,273	5.6\%
Export	244,105	272.450	282,179	153.445	185.264	279.543	215.000	260.000	200,000	200,000	229,199	15.6\%
total	1.668 .533	1.419.667	1.448,274	804.319	1.395.858	1.577.637	1.400,000	1.800,000	1,750,000	1.450,000	1.471.429	100.0
SPAIN	10/11	11/12	12/13	13/14	14/15	15/16	16/17	17/18	18/19	19/20	AVERAGE	\%
Processing	304,000	277,000	146,000	237,000	302,000	108.410	282,118	211,374	355.155	252,167	247.522	23.9\%
Local	167,000	170.000	170,000	173.000	170.000	150,480	160,000	184.392	184,392	184.500	171.376	16.5\%
Export	466,000	530,000	518,000	584.000	658,000	541,963	709.779	657.357	731.529	771.492	616,812	59.6\%
TOTAL	937.000	977.000	834,000	994.000	1,130,000	800.852	1,151.897	1.053,123	1,271,076	1,208,159	1.035.711	100.0\%
USA	10/11	11/12	12/13	13/14	14/15	15/16	16/17	17/18	18/19	19/20	AVERAGE	\%
Processing	293,000	177,000	265.000	194.000	292,000	209,000	175.000	155.000	180,000	170,000	211,000	25.3\%
Fresh Produce	559,000	594,000	563.000	630,000	612,000	695.000	711,000	635.000	633,000	600,000	623,200	74.7\%
TOTAL	852,000	771,000	828,000	824.000	904.000	904.000	886,000	790,000	813,000	770.000	834,200	100.0\%
Italy	10/11	11/12	12/13	13/14	14/15	15/16	16/17	17/18	18/19	19/20	AVERAGE	\%
Processing	110,000	100,000	66.000	88.000	70,000	77,000	55.000	80,000	72.000	80,000	79.800	15.8\%
Local	286,000	350.000	316,000	419.000	427,000	438.000	400,000	445.000	408.150	315.000	380.415	75.6\%
Export	30,000	70.000	29,000	39,000	47,000	40,000	35.000	45.000	47.850	50,000	43.285	8.6\%
TOTAL	426,000	520,000	411,000	546,000	544,000	555.000	490,000	570,000	528,000	445.000	503.500	100.0\%
turkey	10/11	11/12	12/13	13/14	14/15	15/16	16/17	17/18	18/19	19/20	AVERAGE	\%
Processing	20.000	40,000	20,000	32,000	34.000	40,000	40,000	40,000	50.000	50,000	36,600	4.6\%
Local	374.000	379,000	250,000	277,000	260,000	202,000	280,000	290,000	478,000	400.000	319,000	40.1\%
Export	466,000	512,000	354.000	439,000	460,000	420,000	390,000	300,000	575.000	475.000	439.100	55.3\%
TOTAL	860,000	933,000	624.000	748,000	754.000	662,000	710,000	630.000	1,103,000	925.000	794.700	100.0\%
RSA	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	AVERAGE	\%
Processing	79,204	58,756	72.015	99.861	97,898	66,000	70,000	115.000	130,000	170,000	95.873	27.1\%
Local	12.644	12,621	13.149	14.108	15.127	16,000	16,000	15.000	20,000	25.000	15.965	4.5\%
Export	161,236	157.682	159.404	198,345	226,105	226,000	225.000	330,000	340,000	400,000	242,377	68.4\%
total	253.084	229,059	244.568	312,314	339.130	308,000	311,000	460,000	490,000	595.000	354.216	100.0\%

Another major source of lemon production and processing data citrus reports (see references) Unfortunately USDA data does not disaggregate between EU countries or between Mexican lemon and lime output.
CHALLENGES FACING There are several major challenges facing lemon production and the industry

Climatic factors including frosts, droughts, heavy rains and hurricanes

Agricultural residues (AR) issues arising from the use of pesticides and herbicides. The industrice regulation residues and there is a need to coordinate accepted reference values as it creates market distortion and uncertainty.

Chronic and acute pests and diseases, particularly HLB (Huanglongbling - citrus greening disease), citrus black spot (CBS) southern producing countries, notably Argentina, South Africa and Brazil. Mediterranean Basin producing countres (especially Spain and Italy) do not suffer from chronic pests and can be considered as "phytosanitary islands
Alternative land use, including urbanisation.

In addition, some countries face specific challenges which are outlined in the country sections below.

MAJOR LEMON PRODUCERS

Argentina

When Ernest Guenther wrote his famous six-volume book on Essential Oils, there was negligible mention of Argentina as a lemon oil producer Seventy years on, the country is the worlds major producer - yet another illustration of the continuous essential oils. Over the past 50 years Argentina's prover the past 50 years have increased significantly vocames on decade, from an average annual
volume of $80,000 \mathrm{MT}$ in the 1970s, to 200,000 MT in the 1980 s , to 540,000 MT in the 1990 s and 900,000 MT since 2000 and to over $1,000,000$ MT during increars from 2015-2020. Recently been facilitated not only by the growth in production but also the decision to impose higher quality fresh fruit export standards. While the average size of annual crops has
increased, improved production and processing techniques are helping to maximise the yields of fruit and oil. The varieties grown, mainly Lisbo Genova and Eureka, combined with the extraction equipment used, allow for an average yield of 0.5\%. Annual production of lemon oil over the past decade has ranged between $4,150 \mathrm{MT}$ to $6,750 \mathrm{MT}$. In recent years Argentina has usually accounted for approximately 60% of global lemon processing

The sizeable fluctuations in the size of the Argentine crop - and hence the volume of lemon processed - can have a major impact on the global illustrated. There were two particularly poor crops in 2010 and 2014 caused pents Frezes in 2007 2009 and 2011 impacted the following year's crop, especially the newer freezes are combined with previous dry seasons. 2013 saw the biggest freeze in 60 years combined with a dry season in 2012 leading to a disastrous fall in production since these weather events affected all th rather than just new trees

Alongside substantial variations in production there has been sizeable fuctuation in yields per fruit per hectare (ha). 2006 and 2007 saw some the highest productivity levels at Mearly 40 MT ha compared with 27 M range of factors 18 MT/ ha in 2014. variations including

Soil salinisation and/or fatique after growing lemons for many years on growing lemons
the same land.

Slow renewal of plantations in part because of limited availability of planting stock because of HLB prevention efforts and a lack of incentives for growers to replan and then have to wait several yea for new fruit.

Citrus black spot and citrus canker limit production and fresh exports.
ne use of pesticides, fertilisers and herbicides is increasingly estricted by market and legislativ demands.

Climatic factors - very high emperatures cause early fruit drop; changing rain patterns educed rain in November/ December, impacting fruit growth and more rain later in the season, affecting the final stages of production

A major challenge facing the industry is HLB. As yet, Tucumán is considered HLB and insect free but they exist in neighbouring areas and industry's future. A considerable amount of work has been undertaken and currently HLB is under controL. Another threat is citrus tristeza virus which has been kept under control.

Economic and political instability has also created many challenges Over the past two decades there combined with dramatic currency fuctuations and the depreciation of he peso against the US\$ and Euro, high interest rates, dependence on foreign loans, export restrictions, energy rationing and more recently COVID-19 restrictions. Since important agrochemicals and equipment used in the sector are imported, this has ed to huge price increases. Thes political instability and severe weath patterns, have combined to create major problems for Argentine lemon growers and processors.
The main lemon varieties grown in Argentina are harvested from March until August.

In 2017 lemon was grown on 53.744 ha of which almost 75% was located of Argentina. The neighbouring provinces' production areas and their emon production were as follows:

Tucumán	$39,180 \mathrm{ha}$ Salta	$1,300,000 \mathrm{MT}$
8,009 ha	$240,270 \mathrm{MT}$	
Corrientes	$2,694 \mathrm{ha}$	$60,615 \mathrm{MT}$
Jujuy	$1,834 \mathrm{ha}$	$47,000 \mathrm{MT}$
Total	$\mathbf{5 3 , 7 4 4}$ ha	$\mathbf{1 , 6 7 5 , 8 5 1 ~ M T}$

The area planted to lemon was forecast to remain unchanged, but replacement of old plants with new nes, in part to minimise the effec frosts, increases the number of yields. The future area under lemons is not expected to expand significantly in part because of competition from sugar cane and urban expansion in Jucuman province. However, new mprove yields and raise production Argentina has HLB-free status with only very isolated cases of greening eing detected in the provinces of Misiones and Corrientes. However, HLB arrives, it could significantly affect yields and output levels.

Lemon production, like other fruits, aces problems relating to high taxes f access to credit. Production costs re increasing, mainly labour, inputs, energy and transport costs, both ocal and international. In part this is because of the uncompetitive peso currency and high annual inflation rates of $20-50 \%$. In recent years the fing of export taxes, combined with export rebates, has helped to reduce exports have faced problems becaus of EU restrictions on Argentine mports because of disease and $A R$ issues. However, Argentine fresh emon exports to the USA have now begun along with efforts to expand fresh lemon exports to non-traditiona markets.

Unlike most other countries, a larg proportion of lemons is grown in Argentina for processing. Tucumán ovince is a long way from a port, hich can make fresh fruit exp ficult. Hence the vital importance nd plantation owners a very different mindset from many other producers. n contrast to other producing countries, domestic fresh lemon nd exports of fresh fruit accoun approximately 245,000 MT, some 10% nd 25% of production respectively. learly lemon is grown to service he processing industry with usually ver one miltion MT going to the processing industry.
pain
pain is Europe's largest lemon producer and the largest producer
oil- each year processing between $20-25 \%$ of output. There are proximately 48,000 ha of lemo h an estimated 14 million trees. emons are grown in southern Spain, Murcia (approximately 50% of output) Valencia (35\%) and Andalusia (15%). ver the past decade production of organic lemons has been increasin quickly reaching 7,117 ha in 2019

Over the past 50 years Spanish lemon production has shown an upward trend, despite wide annual roductions. Over the period annual emon crop in Spain in 2020/21 is forecast to be 1,290,000 MT, making it the world's largest producer o mons, of which some 370,000-
. ariety accounting for approximately 70% of total production. It has a spherical shape and the peel is thin and smooth. It has a high content of juice and a high aciaity of juice. Cold pressed oil (CPO) has a high aldehyde content. Verna is a summer crop and a variety grown only in Spain. It few seeds as well as a low acidity compared to Fino. CPO oil has a low aldehyde content.

Old trees are being replaced when needed, as the sector is profitable overall and there is now less threat from losing the land to alternative uses, such as housing. As most of paying fresh fruit market it is in balance and sustainable even a the EU subsidies going to processed fruit were eliminated. No untreatable diseases affect production although ARs are a growing concern. However, the industry is committed to reducing ARs and in recent years some changes have been implemented is sorted in the For example, the fruit select for fresh or for processing so more fruit goes directly from the tree to the processing plants. A second selection is made at the packing house before applying the post harvest treatments. This change in dealing with the fruit leads to a significant reduction of ARs
Growers and exporters were reported to be integrating but processors do
not own the plantations although there are some exceptions to this general pattern. The increasing size efficiency. Growers and exporters are reported to be integrating and this is shortening the distribution chain.

Italy

Italy is Europe's third larges producer of lemons, behind Turkey and Spain. Approximately 85% of on about 23.000 ha of land, with most of the rest grown in Calabria and a small quantity in Amalf. The main varieties of lemons grown in Italy are Femminello Comune (53\%), Monachello (10.2\%), and Zagara Bianca (23.5%). More lemons ar produced in the winter season, whic runs from November until January April until July Sicily produces about 85% of Italian lemons but production on steep hills limits mechanisation and further pushes up already relatively high labour costs. Recent estimates of Italian lemon production are as follows: 2017/18 570,000 MT, 2018/19-528,000 MT. 2019/20-445,000 MT, 2020/21over the past decade of 503000 MT The USDA estimates that Italy processes approximately 80,000 MT of lemon annually, substantially below Bredenberg's 2011 estimate of 190,000 MT.

Lemon production by other Europea producers in 2019/20 was estimated at: Greece: 82,255 MT, Portugal 17,00 MT and Cyprus 5,000 MT

USA
California dominates US lemon from Arizo with small quantities lemon production 2271 million boxes (almost 1.0 million MT), of which California accounts for 25.3 million boxes*. Approximately 25,000 In the USA the main focus is fresh fruit but NFC (not from concentrate) lemon juice has been growing strongly. In 2020 domestic demand for fresh lemons decreased because of COVID-19 due to the shutdown of schools, restaurants, cruise lines and other commercial food-service operations. This led to changes in th amounts of fruit intended for fresh
consumption and fruit for processing

Where previously $85-90 \%$ of the lemons were going to the fresh fruit market, this disruption in the foodservice might generate the split likely to be 70% fresh fruit and 30% fruit for processing. Also puffing disease can lemons being processed because it makes fruit unsuitable for the fresh fruit market. However, the shape of these fruits makes them more difficult to process and leads to reduced yields. Efforts are being made to stop the spread of canker from Florida although as yet no infection of the trees has been found. Overall the growth potential ofthe US le no because of urbanisation, high labour land and other costs, as well as water constraints.
-Care must be taken regarding measurement. Us
citrus fruit is usually measured in boxes whose ne weights can vary between states. In Califorinia a box
is net weight 80 lbs. (36.3 kg). A US ton is a sho is net weight 80 lbs. $(36.3 \mathrm{~kg})$. AUS to is is a short ton
which is equivalent to approximately 0.90 metric Which is equivalent to approxi
tonne (MT) $1.0 \mathrm{MT}=1.000 \mathrm{~kg}$.

Mexic

Mexican data combine lemon and lime but the latter dominates Regarding lemon, Mexico is a supplying to the world market and information is very limited. Production is undertaken in Cuidad Victoria, San Luis Potosi, Colima and, since 2006 the Yucatan with the Eureka and Limonera the dominant varieties. In 2020/21 Mexico's combined le to expand by 6% to 29 million M because of favourable weather with lemon production estimated a 135,000 MT from 9,864 ha. In their 2018 Cartagena presentations, Blum and Davalos put lemon production a 80,000 MT while Norberto Rodrigue put it at 160,000 MT and lemon oil production was estimated at 30 for processing (Bredenberg 2011) Recently lemon consumption and exports were reported up due to the greater supplies. There is reported to be a good market due to the NAFTA trade agreement and there is some growth potential. However, production faces several challenges including HLB, climatic variations and poor soi quality

South Africa
Lemon production in South Africa is relatively recent. Nevertheless, it now ranks as the world's sixth larges lemon producer and is considered
a consistent and reliable supplier The varieties planted are mainly Eurekd and Lisbon, with a small amount of Genova and Limoneira (as in Argentina). South Africa has concentrated its efforts on developing high quality fresh fruit, processing Africa can be very versatile when it comes to how many fresh fruits are sent for processing and so is capable of being in or out of the oil market as and when it is more commercially attractive to do so. Both the growing and the processing activities hav been supported by international interests and favoured by the free States. However, the existence of citrus black spot in certain growing areas and the imposition of strict phytosanitary import controls in the EU and US markets impacts the dynamics of the secto
In 2020/21 production of lemons/ limes was forecast to increase by in the area planted and new trees planted in the past five years coming into full production. The impact of COVID-19 on production is expected to be minimal. Lemons and limes for processing are forecast to decrease by 19% to 145,000 MT compared with 178,000 MT in 2019/20, based on increased exports and domestic consumption of fresh lemons. Lemon MT of fruit. Citrus black spot continues to be a problem and impacts lemon exports to the EU and USA.

Turkey
Lemon production is forecast to rise 5% in 2020/21 to 1.0 million M as a result of favourable weather Consumption is forecast down slightly while the larger crop is expected being one of the five largest lemo producers in the world, Turkey has only a marginal processing industry. Fresh lemon exports are subsidised by the Turkish government, while the large internal market absorbs the poorer quality fruit. In addition, the varieties grown do not give very good juice, and there are proble whons not to process In 2020 unprecedented number of shipment of Turkish Lemons was rejected by several EU countries becau they contained excess levels of various ARs, which would be further concentrated if they were processed.

Although Turkey processes very ew lemons it can affect lemon oil availability. For example, if Turkey has poor crop the lack of fruit for export mpacts the fresh market which in turn affects the volume of lemons available future potential for Turkey to become a processor and supplier of lemon il but various issues will need to be resolved. These not only relate to ARs but also like many countries it faces water supply issues as well as climatic risks.
Brazi
razil is the dominant global producer f oranges but lemon is a relatively recent introduction. The variety grown is Bearss or Sicilian lemon, eveloped mainly for humid climates. he majority is sold as fresh fruit but a proportion is processed by two of emore are produced mainly in the Lemons are produced mainly in the meira area with a smaller quantity in China
China's lemon production is thought o be around 500,000 MT but quite dispersed and with limited agricultural cultivars. The focus is on fresh fruit with very limited processing but with strong growth potential.
srae
Annual lemon production in Israel is estimated at around 50,000 MT focused on fresh fruit. There is ompetition from other crops as well s lack of water and growth prospects are stable.

EEGISLATIVE AND REGULATORY ISSUES Due to its many possible uses, lemon oil has a wide range of legislation and regulations in many countries cosmetics and chemical substances. A key challenge is adapting to the differing regulatory requirements between markets. Processors face the difficult task of producing high quality ow residue lemon oil, complying with egulations for all substances and countries at an acceptable price.

Agricultural Residues (ARs) Over the past two decades AR in lemon oil have become an increasingly important issue Pesticides are used to eliminate the pests and diseases attacking the tree and the fruit - both aiming to raise productivity and improve the fruit's
visual appearance. Pressure from consumers and processors has led to eductions in the type and quantity of agricultural chemicals used - as well s being a means to lower production costs. Fungicides are used to prevent f the fruit generally to preserve visual aesthetics and post-harvest o prolong the life of the fruit. The exception to improve yields is for the control of greasy spot. Without the ontrol of greasy spot it could make ne difference between a norma ad and none at all. The issue is of greatest concern in the Yucatan, exico. Wax is used to make the fruit ungicide in the wax because it is fonvenient to have it on the exterior of the fruit and the wax protects it to enhance the efficacy

There is an inherent conflict between fresh fruit customers and lemon oil ustomers regarding ARs. Fresh frut ustomers often require aesthetically pleasing frut involving the use customers face increasingly strict specifications permitting only very low levels of ARs. As a result, those farmers and processors focusing on the fresh market have difficulty producing "clean" oil. Because of its ependence on lemon product rgentina has been a leader in educing the use of agrochemicals time it has reduced the use of agrochemicals in the fields and began converting packing houses so that post-harvest chemicals are applied after the sorting process. Research is being undertaken using different planting techniques and rootstocks to
ncrease oil yields per hectare while reducing the need for agrochemicals. For the past decade Flying Dragon rootstock has been introduced and planting densities have been in the older plantations averaged 250-300 trees/ha whereas the new plantations have 400-600 trees/ha

However where the concentration is on the fresh fruit market there are still issues relating to the use of substances that are not globally acceptable. In addition, some approved substances are beginning ompounds need to Diligent testing protocols and continued AR reduction is vital for the future of Lemon oil products.

Pre-harvest most citrus fruit is treated with pesticides and also post-harvest at the pack houses once the fruit is sorted. This leads to a problem in the oil because the pesticides remain the fruit Often batches are tested to establish the pesticide levels which can influence the use of the oil: if the levels of pesticides are low then this can be processed for consumption or flavours, but if it is too high then It wilt have to be used in a fragrance application. In addition, other physical ests are undertaken to determine the quality (e.g. density, re dactive ind

Legislation and regulations on pesticides have become stricter and differ between countries. Also, industry requirements are often much stricter than the applicable legislation. Considerable efforts are being made
to address these issues by different processors in each producing origin and they are working closely with growers. The fact that a lemon grower's major income is from fresh fruit sales has complicated efforts usage AllIMPO in Spain has been closely involved in the rational use of pesticides There is also the related question of the impact on the final product of the amounts of residues currently found in any lemon oil as usage is proportionately very small. Blum and Davalos (2018) have argued that the reduced use of pesticides productivity but the reduction is difficult to quantify. Assuming a yield of 5.5 kg oil per MT of fruit this represents a high concentration rate of ARs in the oil of approximately 166.1. They argue that organic frut gives a low yield of about 4.1 kg of oil per MT of fruit, with only 38 MT of fruit per hectare. This compares yields of 5.5 kg oil/ 1 MT and $55 \mathrm{MT} /$ low quantities of agrochemicals. The Italian industry argues that for several reasons ARs are less of a problem in their industry. The factors cited include: smaller growing areas, less intensive agriculture reducing the spread of disease and need to use pesticides, the rapid growth of organic farming and PGI (Protected Geographical Indicator) status

PROCESSING
CHARACTERISTICS Processing of lemon is invariably undertaken close to where lemons are produced - fresh lemons are not processed

Lemons have practically no waste By cold pressing, some $0.30-0.55 \%$ of
cold pressed (CP) oil is extracted from the skin with no thermal treatment and has a golden yellow colour. To produce one drum of CP lemon oil requires more than two large truckloads of lemons. Following the first pressing some oil remains in both the flavedo (yellow part) and albedo (white part), which ca lemon oil", a colourless product The remaining skin can be dried and prepared for pectin extraction a product used increasingly in the food and beverage industry. The preparation process requires large amounts of water and energy for drying. In addition, lemon juice is produced and concentrated, but also sold as NFC (not from concentrate) a small amount of aromatic oil can be recovered, known as "lemon essence oil" or "oil phase essence", as well as the aromatic water known as "lemon aroma" or "lemon water phase". Also obtained are the pulp cells of the lemons, used to increase the naturalness of drinks and in fruit preparations

LEMON OIL

PRODUCTION
The dominant producer of lemon approximately 70% of its production although this varies annually. In recent years annual global lemon oil production has ranged between $6,500-10,000$ MT. Production varies according to the volume of lemons processed, the equipment used, the maturity and variety of the fruit. If the fruit is picked at the right moment This, combined with varieties and extraction equipment usually leads an average yield of 0.4-0.5\%. Argentina accounts for about $60-70 \%$ of the global lemon oil supply with Tucumán province accounting for around 90% of Argentine supply so that "Tucumán Province produces the lemon flavour and fragrance ingredients for the world". To understand the dynamics note the role of long term contracts between Argentinian processors and a major US beverage company.
spain is the second largest producer but the yield is considerably lower than Argentina.

ESTIMATED GLOBAL LEMON OIL PRODUCTION AVERAGE
 2017/18 TO 2019/20

Country	Volume Processed (MT)*	Approximate Yield (\%)	Lemon Oil (MT)	Total \%
Argentina	$1,330,000$	0.50	6,650	68.3
Spain	272,900	0.35	995	10.2
USA	168,300	0.35	590	6.1
Italy	77,300	0.50	385	3.9
Mexico	70,000	0.45	315	3.2
South Africa	138,300	0.35	485	5.0
Brazil	50,000	0.35	175	1.8
Turkey	46,600	0.30	140	1.4
Total	$2,153,400$		9.735	100

Bredenberg (2011) estimated annual average world CP lemon oil output was 7,070 MT.

More recently, AILIMPO (2018) stimated annual global CP lemon oil production at approximately $7,250 \mathrm{M}$ of which Argentina 5,000 MT (60\%), Spain 980 MT (12%), USA 850 MT (10%) taly 350 MT (4%), Mexico 300 MT (3\%), South Africa 200 MT (2%), Braz has been argued that if global lem processing is approximately 2 million MT then lemon oil production could be as high as $8,000-10,000$ MT.

The table estimates global lemon il production based on a threeyear average of estimated lemon processed from 2017/18 to 2019/20. Given the annual variations in there are sizeable variations in a country's lemon oil output.

It is important to recognise that over he past century there have been sizeable shifts in production. Writing in the early 1950s, Guenther said the major producers of lemon oil were southern Italy and California while Spain, Brazl and Argentina produce Who knows but future economic, climatic and other environmental factors could lead to a continued shift in the location of production. The estimated quantity of lemon fruit processed in major lemon oil producing countries is detailed in the table

PROCESSINC
EQUIPMENT
The earliest lemon oil recovery techniques began in Italy in the late 18th century and involved handpressing the peel against natural sponges fixed on a terracotta basin A mechanised system of citrus oil extraction only began at the beginning of the 20th century and new and improved systems wer War and led to today's well known Pelatrice, Brown, Sfumatrice, and FMC machines. Modern commercial lemon oil extractors are designed to efficiently remove oil without changing its intrinsic properties. The two alternative approaches are (i) bending the peel to force the oil out of the ce or (ii) pricking the skin and rupturing
the oil cell. Now there are three majo

Region	2010/11	2011/12	2012/13	$\mathbf{2 0 1 3 / 1 4}$	$\mathbf{2 0 1 4 / 1 5}$	$\mathbf{2 0 1 5 / 1 6}$	$\mathbf{2 0 1 6 / 1 7}$	Average
Argentina	1,211	963	996	570	1,195	1,050	950	991
USA	300	191	274	169	255	202	175	224
EU (Italy, Spain, Greece etc.)	347	235	192	312	380	240	280	284
Mexico (estimated)	85	75	80	80	85	85	88	83
South Africa	82	84	58	80	77	84	84	78
Turkey	60	65	55	60	57	58	64	60
China (estimated)	10	20	30	40	50	50	55	36
Israel	2	3	3	3	3	2	2	3
Other	4	4	4	4	28	42	68	22
Total	2,101	1,640	1,692	1,318	2,130	1,813	1,766	
Source: Blum and Davalos 2018								

ypes of equipment for processing lemons.
. Italian oil extractors, called pelatrices or sfumatrices, available a range of models. It is a twostep system, whereby the first rasps the outside peel (flavedo) to break the vessels containing the lemon oil, and then a centrifuge separates the solids and water whole lemon is rasped first to extract the oil, and in a second the juice is squeezed. In the second step, using for example the polycitrus indelicato, the fruit is cut in two and the juice is pressed out. Using this system the quality of the oil is considered higher, and fruit of all shapes and sizes can be processed.
2. American FMC equipment (now JBT), extracts the oil and juice together, but gives a lower oil yield It was initially developed to proces oranges around 1950. It punctures the outside of the skin releasing the oil, and simultaneously perforates the centre of the fruit to remove the juice and pulp. With five cups in a row and 100 hits per minute
some 500 fruit can be processed per minute. For greatest efficiency the fruit should be the same size and shape as the cup. FMC leas rather than sell their machines. When the patent expired a Spanish market, which can be bought.
3. The Brown oil extractor from the USA uses a two-step system, instead the peel is cut with small knives, and then in a second step the juice is extracted. It gives a higher yield of oil, which may be as much as 0.05%, but some believe the juice is of a poorer quality. Brown machines are also only leased. FMC has developed a similar oil extractor called the MORE. In Argentina, this is the mos quoted at about 5.5 kg of oil per metric tonne of fruit (Blum and Davalos).

Although lemon oil is a by-product it can have a significant impact on profits. Therefore, juice processors have installed state-of-the-art centrifuges and de-winterisin machinery to maximise yields.

Argentina

The increased number of lemon groves in Argentina was primarily
focused on the processing industry and although the amount going to the fresh market has increased $65-70 \%$ is still processed. The few very large producers operating in Tucumán have invested in higher oil yield Brown processing equipment, encouraged and supported by th
stability of long-term contracts. stably of long-term contracts, company.

Harvesting fruit is a costly part of the production process and mechanical harvesting is being investigated and implemented. Labour strikes in 2017 combined with the impac of COVID-19 on labour availability accelerated this development. In is being developed in an effort to increase oil yields.

spain

In Spain there are 48,000 ha of lemon groves, more than 3,000 growers, 100 packing houses for fresh exports and 14 citrus processors.

ARGENTINA LEMON PROCESSING 2002－2017

	\％Crop Processed	Essential Oil（MT）	Frozen Pulp （MT）	Conc．Juice （MT＇000）
$\mathbf{2 0 0 2}$	73			53
$\mathbf{2 0 0 3}$	69			47
$\mathbf{2 0 0 4}$	75			54
$\mathbf{2 0 0 5}$	61			59
$\mathbf{2 0 0 6}$	69		60	
$\mathbf{2 0 0 7}$	63		670	47.9
$\mathbf{2 0 0 8}$	68	4,000	520	55
$\mathbf{2 0 0 9}$	74	4,400	600	43
$\mathbf{2 0 1 0}$	68	3,250	1,007	68
$\mathbf{2 0 1 1}$	71	5,442	804	54.3
$\mathbf{2 0 1 2}$	73	4.344	813	49.5
$\mathbf{2 0 1 3}$	75	4.397	452	33.7
$\mathbf{2 0 1 4}$	66	2,413	852	63.7
$\mathbf{2 0 1 5}$	76	4.561	4.840	907
$\mathbf{2 0 1 6}$	68	4,441	832	66.5
$\mathbf{2 0 1 7}$	71		61.1	

Source：Federcitrus 2018 pp．11－12

The lower yield of lemon oil achieved by the Spanish processing industry is due to the fact that mostly Inline FMC and Excel citrus extractors are used． Fruit is harvested to meet demand from the fresh fruit market which does not always coincide with the optimum on high quality lemons means that fewer are available for processing Spanish processors do not usually own plantations，but there are some exceptions．

Italy

Sicily was the first area to produce lemon oil on a commercial basis beginning in the 1900s and for many to obtain oil．Eventually，the market
for juice and other derivatives also developed，allowing the cost of the aw materials to be shared by all produts．As other producers arrived， Sicily found it increasingly difficult to remain competitive，in part because of its geographical position，smaller farms，a limited market for fresh fruit Mal secco，and Mediterranean fruit fly pest．Until 2008 the EU provided subsidies to compensate for higher production costs．In the early 2000 s approximately two－thirds of the lemon crop was processed but this has now fallen to around a third．To compensate for the higher fruit prices some processors differentiated their the higher priced perfumery industry
but this trend has reversed．Estimates of Italian lemon oil production diverge quite widely with current cro estimates averaging approximately 650 MT．

SA
California produces 80% of US lemons，giving coastal lemon oil，while Arizona accounts for the remainder， giving desert type oil．Lemon Sunkist cooperative which，together with one other large processor makes up the lemon oil producing industry．Production for the fresh fruit market dominates production，with approximately 30% of production being processed．According to Bredenberg，the lemon groves are profitable and seem to have reached a certain equilibrium，with the ＂slow growth＂as an environmentally friendly initiative．

Mexico
In collaboration with a soft drinks company，the Eureka variety was planted in Mexico，a large proportion of which was processed using an efficient extraction system creating good yields．

SOCIAL AND ECONOMIC CHARACTERISTICS he major economic and social contributions of the lemon oil sector are in relation to the employment created and the revenues generated in many cases from exports．The revenues generated are greatly influenced by lemon oil prices which are very dependent on the size of the Argentine lemon crop－and to a esser extent the Spanish，Italian and turkish crops－all of which are very weather dependent．Other factors influencing price include carryover levels，currency fluctuations and particularly the value of the US dollar as well as economic and political countries．In addition，while some data might be available on the economic and social impact of the lemon secto in producing countries，lemon oil accounts for only a proportion of these figures．
rgentina
n 2017 in the Argentine citrus industry there were 5,300 citrus 75 export citrus packing houses and

2 processing plants．Total direct estimated at 91,490 ，so gector was that emon production accounts for just less than half of total citrus production，then approximately 40，000－45，000 are directly employed lemon production and processing． Moreover，some 58，350 transien labourers were working in the citrus sector，suggesting an estimated in the lemon sector In addition， esides family dependents，the would be many other occupations dependent on the sector for their livelihoods e．g．agricultural input and machinery suppliers，transport storage，agricultural machinery and nput suppliers
The breakdown of the 91,490 direct permanent employment in the citrus sector was：

Permanent Employment in
Argentina Citrus Industry 2017

Primary production：	
Permanent employees	6,440
Nurseries，planting	5,460
Pruning，weeding， pre－harvest	27,900
Harvesting	25,000
Packing－permanent labour	22,100
Industry－permanent labour	4,600

In 2017 it was estimated that the value of Argentina＇s citrus industry was just over US\＄ 1 billion at US $\$ 1,178$ million． Essential oit exports，dominated by 201 million as the table illustrates

Value of Argentina Citrus Industry 2017 US $\$$ m．（US $\$ 1.00=$ A Peso 1000 April 2018）

	Market		
Fresh Fruit	378	319	697
Conc juice	33	167	200
Ess Oils		201	201
Peel		80	80
Total	411	767	$\mathbf{1 , 1 7 8}$

Spain
In Spain in 2020 the lemon sector was estimated to generate a revenu of at least €700 million from the sales of fresh lemons，juice，lemon oil and peel．

EXPORT OF FRESH LEMONS

Destination	No．of markets	Volume（tonnes）	Value（ $€$ ）	Equivalent to
EU	28	561，000	$472 €$ million	30，000
Others－－	62	51，000	44 € million	ed torries
Total	90	612，000	$516 €$ million	

DIRECT EMPLOYMENT GENERATION WAS ESTIMATED AS FOLLOWS：
IMPROVING SOCIAL MANAGEMENT SYSTEM

19，785

Jobs

CULTIVATION

Number of jobs
3，000

HARVESTING
Number of jobs
7，717

OTHER Number of jobs

 600$$
+50 \%
$$

Women

Other environmental policy initiatives include commitments to reduce efficient utilisation as well as efforts at CO_{2} capture and the achievement of a positive CO_{2} balance．

The Spanish lemon sector contributes actively to the fight against climate change by being a eal CO_{2} sink．In early 2021，AILIMPO the lemon sector showing that it annually captures more than 300,000 MT of CO_{2} ．

Measurements of CO_{2} emissions were taken along the value chain from growing，transportation， packaging and processing．Lemon groves have a high capacity to capture CO_{2} through carbon
fixation，and AILIMPO estimated the crop captures the equivalent of 360,550 MT each year．The high CO_{2} fixation figures are due to the implementation of increasingly sustainable practices by producers （e．g．low soil tillage，use of residues and localised irrigation systems leading to reduced wate consumption，growth of organic cultivation，use of renewable energy and electric vehicles）．

Currently，the sector emits an estimated $49,300 \mathrm{MT}$ of CO_{2} a year －18，122 MT in transportation，19，705 MT at packing house level and 11，472 MT in processing plants．This gives a net CO2 saving of 311,250 MT a year as the illustration right illustrates．

CONCLUSIONS
Lemon production and processing， including the production of lemon environmental contributions to the lemon producing regions of lemon producing countries，particularly Tucumán（Argentina），Sicily（Italy）and Murcia（Spain）．The industry provides livelihoods for tens of thousands of people as well as generating
millions of US $\$$ in sales and export revenues．In addition，the sector makes substantial environmental contributions，and initiatives are being adopted to combat climate change by capturing CO_{2} as well as providing other environmental benefits．
Over the past century the lemon industry，including lemon oil，has witnessed substantial changes and

WATER NEEDS AND EFFICIENT USE

COMMITMENT WITH CSR AND POLICIES POLICIES

POSITIVE CO2 BALANCE： $\mathrm{NET} \mathrm{CO}_{2} \mathrm{CAPTURE}$

Positive CO_{2} Balance

```
\(\mathrm{CO}_{2}\)
```

1 year＇s diesel consumption of 140,000 cars driving $20,000 \mathrm{~km} /$ year
304，840
MT of CO_{2} captured－Equivalent to
Source：ALIMPO

CARBON FOOTPRINT OF THE
LEMON SECTOR IN SPAIN

Addressing United Nations sustainable development goal（SDG） 13 ，to take change and its effects

Spanish
Lemon

figures $\quad\binom{45,832}{$ hectares }\quad| $1,208,159$ |
| :---: |
| tonnes |

Production
Internal Transport
Warehouse Packaging
Processing
Total Lemon Sector Balance
these are likely to continue, both with regard to production and along the value chain. The industry faces many challenges and future trends are difficult to predict. Some of the major lemon producers and processors, particularly in the EU and USA, face substantial pressure on land availability, combined with high labour and other costs. Currently Argentina, the largest producer, faces a range of challenges. Meanwhile, in China the industry is reported to be growing and thriving but the main focus in China is to grow fresh fruit for the domestic market.

The industry faces a range of challenges, including:

- Production is largely dependent on climatic conditions which are often outside growers' control, although some initiatives can reduce the impact of weather, e.g. irrigation.
- Because of the focus on fresh fruit, pesticide residues have become a major concern as consumers become more quality conscious.
- Investment requirements are high, not only because of lemon's long gestation period before yielding fruit, and hence revenues, but also because of high capital costs (e.g. land, equipment for harvesting and processing) and input costs (e.g. labour, agrochemicals).
- Political and economic instability, particularly in the world's major lemon producing country.
- Currency variability and price volatility for both the fresh fruit and oil can create difficulties.
- Citrus fruit diseases especially HLB - greening, but also canker, black spot, and false codling moth.
- Considerable competition from a range of producers and countries, with considerable variations in efficiency and productivity along the different supply and value chains. Some existing producers face pressures from land development, competitive crops, environmental issues and input costs and may struggle to remain competitive. There are potential new suppliers e.g. China, India.

Nevertheless, on the positive side, the increasing demand for healthy, natural "green" products should facilitate growing consumption of lemon products including lemon oil.

SOURCES AND REFERENCES

1. AILIMPO - Reports and Archives
2. AILIMPO The Socioeconomic Importance of the Lemon Sector in Spain Average 2010-2017
3. AILIMPO Global Citrus Overview Presentation to IFEAT Study Tour 15-23 June 2018
4. Andy Blum and Sergio Davalos (2018) The Argentinean Lemon Industry, paper presented at IFEAT Conference in Cartagena, Colombia, 9-13 September 2018
5. Karin Bredenberg (2011) The Global Lemon Industry paper presented at IFEAT Conference in Barcelona, Spain 6-10 November 2011
6. Sergio Davalos (2021) Market Report on the Lemon Industry: a quick look at worldwide production and 2021 insights, paper presented at IFEAT Virtual Conference, 19-21 January 2021
7. FEDERCITRUS (Federación Argentina del Citrus) (2018) La Actividad Citricola Argentina The Argentine Citrus Industry May 2018
8. Jose-Antonio Garcia - AILIMPO (2018) Sustainability and Ten-Year Strategy of the Spanish Citrus Industry paper presented at International Citrus and Beverage Conference (ICBC)
9. Suzy Nolan (2008) The Evolution of the Global Lemon Industry during the 21st Century paper presented at IFEAT Conference Montreal 2008
10. Antonio Stracuzzi (2004) The Italian Citrus Industry paper presented at IFEAT Conference Lisbon 2004
11. Clive Teubes Group (2019) Lessons Learnt from Citrus at SAEOPA Conference
12. Treat Market Intelligence (various issues)
13. Elizabeth Webb (2001) Lemon Oil Extraction, paper presented at IFEAT Conference in Buenos Aires, Argentina, 11-15 November 2001

WEBSITES

14. AILIMPO - Spain www.ailimpo.com
15. Citrus and Allied www.citrusandallied.com
16. Eurofruit www.fruitnet.com
17. Ultra - Market Reports www.ultranl.com
18. USDA - Citrus
https://wwww.fas.usda.gov/data/ citrus-world-markets-and-trade

The author would like to thank a number of people, several of whom are listed in the references, for their comments on an initial draft of this article. Further comments on the content would be welcome.

Dr. Peter Greenhalgh

pgifeat@yahoo.co.uk

